Computational Study of Unfolding and Regulation Mechanism of preQ1 Riboswitches
نویسندگان
چکیده
Riboswitches are novel RNA regulatory elements. Each riboswitch molecule consists of two domains: aptamer and express platform. The three-dimensional (3D) structure of the aptamer domain, depending on ligand binding or not, controls that of the express platform, which then switches on or off transcriptional or translational process. Here we study the two types of preQ(1) riboswitch aptamers from T. Tengcongensis (denoted as Tte preQ(1) riboswitch for short below) and Bacillus subtilis (denoted as Bsu preQ(1) riboswitch for short below), respectively. The free-state 3D structure of the Tte preQ(1) riboswitch is the same as its bound state but the Bsu preQ(1) riboswitch is not. Therefore, it is very interesting to investigate how these riboswitches realize their different regulation functions. We simulated the unfolding of these two aptamers through all-atom molecular dynamic simulation and found that they have similar unfolding or folding pathways and ligand-binding processes. The main difference between them is the folding intermediate states. The similarity and difference of their unfolding or folding dynamics may suggest their similar regulation mechanisms and account for their different functions, respectively. These results are also useful to understand the regulation mechanism of other riboswitches with free-state 3D structures similar to their bound states.
منابع مشابه
Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch
Riboswitches are a class of metabolism control elements mostly found in bacteria. Due to their fundamental importance in bacteria gene regulation, riboswitches have been proposed as antibacterial drug targets. Prequeuosine (preQ1) is the last free precursor in the biosynthetic pathway of queuosine that is crucial for translation efficiency and fidelity. However, the regulation mechanism for the...
متن کاملStructural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer for...
متن کاملInsights into Ligand Binding to PreQ1 Riboswitch Aptamer from Molecular Dynamics Simulations
Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Ba...
متن کاملStructure of a class II preQ1 riboswitch reveals ligand recognition by a new fold
PreQ1 riboswitches regulate genes by binding the pyrrolopyrimidine intermediate preQ1 during the biosynthesis of the essential tRNA base queuosine. We report what is to our knowledge the first preQ1-II riboswitch structure at 2.3-Å resolution, which uses a previously uncharacterized fold to achieve effector recognition at the confluence of a three-way helical junction flanking a pseudoknotted r...
متن کاملUsing simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent...
متن کامل